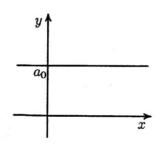
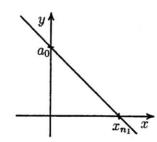


2 1 2 3 4 5 x

Bild 1.32: $f(x) = e^x$, $x \in \mathbb{R}$, (fett) $g(x) = e^{-x}$, $x \in \mathbb{R}$, (dünn)

Bild 1.33: $f(x) = \ln(x), x > 0$, (fett) $g(x) = \lg(x), x > 0$, (dünn)





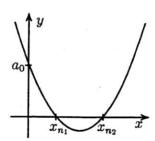
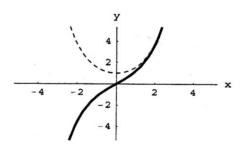


Bild 1.34: $f(x) = a_0, x \in \mathbb{R}$

Bild 1.35:
$$f(x) = a_1x + a_0, x \in \mathbb{R}$$

Bild 1.36: $f(x) = a_2x^2 + a_1x + a_0, x \in \mathbb{R}$



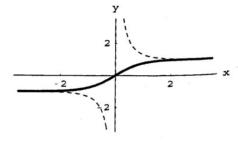
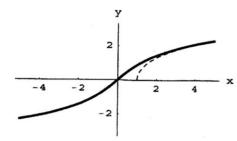


Bild 1.37: $f(x) = \sinh(x), x \in \mathbb{R}$. $f(x) = \cosh(x), x \in \mathbb{R}$ (gestrichelt)

Bild 1.38: $f(x) = \tanh(x), x \in \mathbb{R}$, $f(x) = \coth(x), x \neq 0$ (gestrichelt)



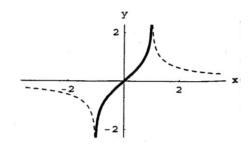


Bild 1.39: $f(x) = \operatorname{arsinh}(x), x \in \mathbb{R},$ $f(x) = \operatorname{arcosh}(x), x \ge 1$ (gestrichelt)

Bild 1.40: $\operatorname{artanh}(x), x \in (-1, 1),$ $f(x) = \operatorname{arcoth}(x), |x| > 1 \text{ (gestrichelt)}$

Definition 1.28: Zu den Winkelfunktionen werden folgende Umkehrfunktionen definiert:

Winkel funktion	Umkehrfunktion
$f_1(x) = \sin(x), \ x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$	$f_1^{-1}(x) = \arcsin(x), \ x \in [-1; 1]$ Arkussinus-Funktion
$f_2(x) = \cos(x), \ x \in [0; \pi]$	$f_2^{-1}(x) = \arccos(x), \ x \in [-1; 1]$ Arkuskosinus-Funktion
$f_3(x) = \tan(x), \ x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$	$f_3^{-1}(x) = \arctan(x), \ x \in \mathbb{R}$ Arkustangens-Funktion
$f_4(x) = \cot(x), \ x \in (0; \pi)$	$f_4^{-1}(x) = \operatorname{arccot}(x), \ x \in \mathbb{R}$ Arkuskotangens-Funktion

Definition 1.35: Die Umkehrfunktionen zu den hyperbolischen Funktionen werden als Area-Funktionen bezeichnet.

hyperbolische Funktion	Umkehrfunktion
$\sinh(x), \ x \in \mathbb{R}$	$\operatorname{arsinh}(x) := \ln \left(x + \sqrt{x^2 + 1} \right), \ x \in \mathbb{R}$ Areasinus-Funktion
$ \cosh(x), \ x \ge 0 $	$\operatorname{arcosh}(x) := \ln \left(x + \sqrt{x^2 - 1} \right), \ x \ge 1$ Areakosinus-Funktion
$\tanh(x), x \in \mathbb{R}$	$\operatorname{artanh}(x) := \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), \ x \in \left(-1; 1 \right)$ Areatangens-Funktion
$ coth(x), x \neq 0 $	$\operatorname{arcoth}(x) := \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right), \; x > 1$ Areakotangens-Funktion